
Diagnostic Test for Incoming Graduate Students

If you struggle with the majority of these questions, you will have to work particularly hard
to succeed in core classes. You should plan your schedule accordingly, so that

you have the time and bandwidth to do so.

1 Quantum Mechanics

Sakurai Chapter 1 Problem 1: Commutator Algebra

Prove
[AB,CD] = −AC{D,B}+A{C,B}D − C{D,A}B + {C,A}DB. (1)

(‘[·, ·]’ indicates commutator, ‘{·, ·}’ is anticommutator, and A, B, C, and D are all operators).

Sakurai Chapter 1 Problem 4: Bra-ket Algebra

Using the rules of bra-ket algebra, prove or evaluate the following:

(a) tr(XY ) = tr(Y X) where X and Y are operators.

(b) (XY )† = Y †X†, where X and Y are operators.

(c) exp(i ∗ f(A)) =? in ket-bra form, where A is a Hermitian operator whose eigenalues are known (denote
the eigenvalues as ai and the eigenkets as |ai〉).

(d)
∑
a′ ψ

∗
a′(x

′)ψa′(x
′′), where ψa′(x

′) = 〈x′|a′〉.

Sakurai Chapter 1 Problem 10: Diagonalizing Hamiltonians

The Hamiltonian operator for a two-state system is given by

H = a
(
|1〉 〈1| − |2〉 〈2|+ |1〉 〈2|+ |2〉 〈1|

)
, (2)

where a is a number with the dimension of energy. Find the energy eigenvalues and the corresponding energy
eigenkets (as linear combinations of |1〉 and |2〉).

Sakurai Chapter 1 Problem 29: Commutation Relations with Functions

(a) On page 247, Gottfried (1966) states that

[xi, G(p)] = ih̄
∂G

∂pi
, [pi, F (x)] = −ih̄ ∂F

∂xi
(3)

can be “easily derived” from the fundamental commutation relations for all functions F and G that
can be expressed as power series in their arguments. Verify this statement.

(b) Evaluate [x2, p2]. Compare your result with the classical Poisson bracket [x2, p2]classical.

Griffiths 2.14: Simple Harmonic Oscillator

A particle is in the ground state of the harmonic oscillator with classical freuqency ω, when suddenly the
spring constant quadruples, so ω′ = 2ω, without initially changing the wave function (of course, Ψ will now
evolve differently, because the Hamiltonian has changed). What is the probability that a measurement of
the energy would still return the value h̄ω/2? What is the probability of getting h̄ω?
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Griffiths Problem 7.1: Variational Method

Use a Gaussian trial function, namely

ψ(x) = Ae−bx
2

, (4)

to obtain the lowest upper bound you can on the ground state energy of

(a) the linear potential: V (x) = α |x|

(b) the quartic potential: V (x) = αx4

Zetilli Problem 5.5: Spin Eigenstates

(a) Find the eigenvalues and eigenstates of the spin operator ~S of an electron in the direction of a unit
vector ~n, where ~n is arbitrary.

(b) Find the probability of measuring Ŝz = −h̄/2

(c) Assuming that the eigenvectors of the spin calculated in (a) correspond to t = 0, find these eigenvectors
at time t.

2 Electromagnetism

Jackson Problem 1.1: Basics

Use Gauss’s theorem (and
∮
E·dl = 0 if necessary) to prove the following:

(a) Any excess charge placed on a conductor must lie entirely on its surface (A conductor by definition
contains charges capable of moving freely under the action of applied electric fields).

(b) A closed, hollow conductor shields its interior from fields due to charges outside, but does not shield
its exterior from the fields due to charges placed inside it.

(c) The electric field at the surface of a conductor is normal to the surface and has a magnitude σ/ε0,
where σ is the charge density per unit area on the surface.

Jackson Problem 2.1: Method of Images

A point charge q is brought to a position a distance d away from an infinite plane conductor held at zero
potential. Using the method of images, find:

(a) the surface-charge density induced on the plane, and plot it;

(b) the force between the plane and the charge by using Coulomb’s law for the force between the charge
and its image;

(c) the total force acting on the plane by integrating σ2/2ε0 over the whole plane;

(d) the work necessary to remove the charge q from its position to infinity;

(e) the potential energy between the charge q and its image (compare the answer to part (d) and discuss).

(f) Find the answer to part (d) in electron volts for an electron originally one angstrom from the surface.
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Jackson 5.33: Mutual Inductance

Consider two current loops (as in the figure below) whose orientation in space is fixed, but whose relative
separation can be changed. Let O1 and O2 be origins in the two loops, fixed relative to each loop, and x1

and x2 be coordinates of elements dl1 and dl2, respectively, of the loops referred to the respective origins.
Let R be the relative coordinate of the origins, directed from loop 2 to loop 1.

(a) Starting from

F12 = −µ0

4π
I1I2

∮ ∮
(dl1 · dl2)x12

|x12|3
, (5)

the expression for the force between the loops, show that it can be written

F12 = I1I2∇RM12(R) (6)

where M12 is the mutual inductance of the loops,

M12(R) =
µ0

4π

∮ ∮
dl1 · dl2

|x1 − x2 + R|
, (7)

and it is assumed that the orientation of the loops does not change with R

(b) Show that the mutual inductance, viewed as a function of R, is a solution of the Laplace equation,

∇2
RM12(R) = 0 (8)

The importance of this result is that the uniqueness of solutions of the Laplace equation allows the
exploitation of the properties of such solutions, provided a solution can be found for a particular value
of R.

Griffiths 5.26: Magnetic Vector Potentials

(a) By whatever means you can think of (short of looking it up), find the vector potential a distance s
from an infinite straight wire carrying a current I. Check that ∇ ·A = 0 and ∇×A = B.

(b) Find the magnetic potential inside the wire, if it has radius R and the current is uniformly distributed.

Griffiths 7.37: Maxwell’s Equations

Suppose

E(r, t) =
1

4πε0

q

r2
θ(r − vt)r̂; B(r, t) = 0. (9)

Show that these fields satisfy all of Maxwells equations, and determine ρ and J. Describe the physical
situation that gives rise to these fields.
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3 Classical Mechanics

Landau and Lifshitz Chapter 1 Problem 1: Double Pendulum

Find the Lagrangian for a coplanar double pendulum (see below) when placed in a uniform gravitational
field (acceleration g).

Landau and Lifshitz Chapter 2 Problem 1: Conservation of Momentum

A particle of mass m moving with velocity v1 leaves a half-space in which its potential energy is constant
U1 and enters another in which its potential energy is a different constant U2. Determine the change in the
direction of motion of the particle.

Taylor Problem 5.40: Resonance

Consider a damped oscillator, with fixed natural frequency ω0 and fixed damping constant β (not too large),
that is driven by a sinusoidal force with variable frequency ω. Show that the amplitude of the response, as
given by

A2 =
f20

(ω2
0 − ω2)2 + 4β2ω2

(10)

is a maximum when ω =
√
ω2
0 − 2β2. (Note that so long as the resonance is narrow this implies ω ≈ ω0).
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Taylor Problem 11.4: Normal Modes of Coupled Systems

(a) Find the normal frequencies for the system of two carts and three springs shown in the figure below,
for the case that m1 = m2 and k1 = k3 (but k2 may be different). Check that your answer is correct
for the case that k1 = k2 as well

(b) Find and describe the motion in each of the two normal modes in turn. Compare with the motion
found for the case that k1 = k2 in Section 11.2. Explain any similarities.

[Note: the normal modes when k1 = k2 are given by:

1. x1(t) = A cos
(√

3k/mt− δ
)
; x2(t) = −A cos

(√
3k/mt− δ

)
2. x1(t) = A cos

(√
k/mt− δ

)
; x2(t) = −A cos

(√
k/mt− δ

)
]

Goldstein 3.19: Orbital Motion

A particle moves in a force field described by

F (r) = − k

r2
exp

(
−r
a

)
(11)

where k and a are positive.

(a) Write the equations of motion and reduce them to the equivalent one-dimensional problem. Use the
effective potential to discuss the qualitative nature of the orbits for different values of the energy and
the angular momentum.

(b) Show that if the orbit is nearly circular, the apsides will advance approximately by πρ/a per revolutions,
where ρ is the radius of the circular orbit.

Goldstein 8.15: Hamiltonians and Lagrangians

A dynamical system has the Lagrangian

L = q̇21 +
q̇22

a+ bq21
+ k1q

2
1 + k2q̇1q̇2, (12)

where a, b, k1, and k2 are constants. Find the equations of motion in the Hamiltonian formulation.

4 Statistical Mechanics

Schroeder Problem 3.10: Entropy and Heat

An ice cube (mass 30 g) at 0◦C is left sitting on the kitchen table, where it gradually melts. The temperature
in the kithen is 25◦C.

(a) Calculate the change in the entropy of the ice cube as it melts into water at 0◦C (Don’t worry about
the fact that the volume changes somewhat).
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(b) Calculate the change in the entropy of the water (from the melted ice) as it temperature rises from
0◦C to 25◦C.

(c) Calculate the change in the entropy of the kitchen as it gives up heat to the melting ice/water.

(d) Calculate the net change in the entropy of the universe during this process. Is the net change positive,
negative, or zero? Is this what you would expect?

Schroeder 5.12: Maxwell Relations

Functions encountered in physics are generally well enough behaved that their mixed partial derivatives do
not depend on which derivative is taken first. Therefore, for instance,

∂

∂V

(
∂U

∂S

)
=

∂

∂S

(
∂U

∂V

)
, (13)

where each ∂/∂V is taken with S fixed, each ∂/∂S is taken with V fixed, and N is always held fixed. From
the thermodynamic identity (for U) you can evaluate the parital derivatives in parentheses to obtain(

∂T

∂V

)
S

= −
(
∂P

∂S

)
V

, (14)

a nontrivial identity called a Maxwell relation. Go through the derivation of this relation step by step.
Then derive an analogous Maxwell relation for each of the other three thermodynamic identities discussed
in the text (for H, F , and G). Hold N fixed in all the partial derviatives; other Maxwell relations can be
derived by considering partial derivatives with respect to N , but after you’ve done four of them the novelty
begins to wear off.

Schroeder Problem 6.45: Derive Everything from the Partition Function

Derive the following equations:

S = −
(
∂F

∂T

)
V,N

= Nk

[
ln

(
V

NvQ

)
+

5

2

]
− ∂Fint

∂T
(15)

µ =

(
∂F

∂N

)
T,V

= −kT ln

(
V Zint
NvQ

)
(16)

for the entropy and chemical potential of an ideal gas.

Schroeder Problem 7.28: Fermi Gas and Density of States

Consider a free Fermi gas in two dimensions, confined to a square area A = L2.

(a) Find the Fermi energy (in terms of N and A), and show that the average energy of the particles is
εF /2.

(b) Derive a formula for the density of states. You should find that is is a constant, independent of ε.

(c) Explain how the chemical potential of this system should behave as a function of temperature, both
when kT � εF and when T is much higher.

(d) Because g(ε) is a constant for this state, it is possible to carry out the integral

N =

∫ ∞
0

g(ε)n̄FD(ε)dε =

∫ ∞
0

g(ε)
1

e(ε−µ)/kT + 1
dε (17)

for the number of particles analytically. Do so, and solve for µ as a function of N . Show that the
resulting formula has the expected qualitative bahavior.

(e) Show that in the high-temperature limit, kT � εF , the chemical potential of this system is the same
as that of an ordinary ideal gas.
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Schroeder Problem 7.72: Bose Einstein Condensation

For a gas of particles confined inside a two-dimensional box, the density of states is constant, independent of ε
(see previous problem). Investigate the behavior of a gas of noninteracting bosons in a two-dimensional box.
You should find that the chemical potential remains significantly less than zero as long as T is significantly
greater than zero, and hence that there is no abrupt condensation of particles into the ground state. Explain
how you know that this is the case, and describe what does happen to this system as the temperature
decreases. What property must g(ε) have in order for there to be an abrupt Bose-Einstein condensation?
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